植物DNA条形码全面应用还有多远?

周世良 中国科学院植物研究所 系统与进化植物学国家重点实验室

报告提要

- 一、DNA条形码:植物材料鉴定必由之路
- 二、中国植物DNA条形码现状
- 三、建设一个高覆盖度的参考序列库
- 四、后DNA条形码时代

一、DNA条形码:植物材料鉴定必由之路

- 1. 技术层面:分类学家鉴定与DNA条形码鉴定,哪个更准确?
- 2. 经济层面:分类学家鉴定与DNA条形码鉴定,哪个更省钱?
- 3. 时间层面:分类学家鉴定与DNA条形码鉴定,哪个更快?

一、DNA条形码:植物材料鉴定必由之路

4. 副产品:

分类学家鉴定:无

DNA条形码鉴定:一套数据

- 5. 大量标本等着鉴定: 未鉴定+错误鉴定
- 6. 大量形态鉴定做不了的事

植物DNA条形码:

- ITS
- matK, rbcL, trnH-psbA, trnL-F, ycf1
- 类群专一DNA条形码

类别	物种数
石松+蕨类	2278
裸子植物	207
被子植物	29611
合计	32096

类别	物种数	ITS
石松+蕨类	2278	4. 52%
裸子植物	207	99. 52%
被子植物	29611	41. 78%
合计	32096	39.65%

类别	物种数	matK
石松+蕨类	2278	14. 44%
裸子植物	207	96. 13%
被子植物	29611	29. 25%
合计	32096	28.63%

类别	物种数	rbcL
石松+蕨类	2278	40.04%
裸子植物	207	92.75%
被子植物	29611	27.82%
合计	32096	29. 11%

类别	物种数	trnL-F
石松+蕨类	2278	8. 17%
裸子植物	207	5.80%
被子植物	29611	6. 01%
合计	32096	6. 24%

类别	物种数	trnH-psbA
石松+蕨类	2278	2. 11%
裸子植物	207	30. 43%
被子植物	29611	6.05%
合计	32096	5. 92%

- 1. 十二五: 成绩与教训
- 2. 十三五: 误入歧途
- 3. 现有数据错误率: 5~8%(20%~30%?)
- 4. 数据管理: 如何管理?

- 5. 如何建设一个有用的数据库?
- ▶材料:依赖标本馆、植物园、自然保护区
- ▶资金: 国家/行业/企业
- ▶技术: 常规测序/高通量测序平台
- ▶数据库管理: 专业人才

"中国植物DNA库"保存维管植物DNA材料202384份,覆盖448科,6435属,48974种(不含种下等级)。其中,中国产DNA材料151860份,包含331科,3842属,27210种,覆盖中国已知维管植物物种的84.78%。

DNA提取: 2小时96个样品

PCR: 2小时2.5万个反应

没有限制

需要多少钱?

面临的挑战:

- ▶物种问题:正向真正的物种迈进的"物种"
- ▶开发类群专一的高分辨率DNA条形码
- ▶清除错误序列
- ▶识别杂交种
- ▶识别协调进化不完全序列、不完全谱系分选现象

四、后DNA条形码时代

- 1. 生物多样性大发现: 物种、基因
- 2. 生物大数据: 标本全面评估、纠正错误
- 3. 环境监测: 生物指标
- 4. 植物物证的广泛使用
- 5. 超级条形码: 基因组

