

Waterbirds and their Habitat Utilization of Artificial Wetlands at Dianchi Lake: Implication for Waterbird Conservation in Yunnan–Guizhou Plateau Lakes

Rongxing Wang
Kunming Institute of Zoology, CAS
2016.10.10

(1) Status of the wetlands and waterbirds in the world

- Solution
- (1) Natural wetland conservation or restoration
- (2) Artificial wetland construction

China: increased by c 122% between 1978 and 2008

(Wetlands International 2012)

中國科學院見明動物研究所 KUNMING INSTITUTE OF ZOOLOGY CHINESE ACADEMY OF SCIENCES

(2) Habitat variables

Interactions between the major habitat variables affecting habitat use of waterbirds at wetlands in situ(Ma et al.,2010)

However

The variation in habitat requirements among waterbird species and groups suggests that wetland management must be based on the **region-specific** knowledge about waterbird communities, including the species and their abundances and habitat requirements.

中國科學院見明動物研究所 KUNMING INSTITUTE OF ZOOLOGY CHINESE ACADEMY OF SCIENCES

(3) Waterbird studies in China

Hotspots

Lower reaches of the Yellow River, Yangtze River and the coastal wetlands.

Such as Chongming Island, Fujian Coast, Yellow River Delta...

• Yunnan-Guizhou Plateau

Prejudice: wintering place: for geese, ducks, gulls, cranes and storks

Annual waterbirds composition: poorly understood

Present spatial distribution of Chinese lakes (Ma et al., 2011).

(4) Specialty of Yunnan–Guizhou Plateau Lakes

Wetland ecosystems are fragile

- ▲ Lie in mountainous area
- ▲ Formed by faulting
- ▲ Lakeside narrow and frequently disturbed by human activities
- ▲ Heavily polluted

- Artificial wetlands: mainly for water purification by planting macrophytes
- However, how waterbirds respond to this strategy is largely unknown.
- **OTo implement waterbird management and conservation, it is essential to first ascertain the particular habitat** requirements of different waterbird assemblages and address related issues.
- O A better understanding of the annual species composition and habitat utilization of waterbirds in the Yunnan–Guizhou Plateau may inform the integral protection of waterbirds on the East Asian-Australasian Flyway.

(5) Objectives of this study

(1) to survey the annual waterbird composition in order to test whether Dianchi Lake can supply habitats for different seasonal waterbirds;

(2) to test whether waterbird composition differs among different types of artificial wetlands around Dianchi Lake, and to find the potentially valuable type(s) of wetlands for waterbird conservation in Yunnan–Guizhou Plateau lakes.

Methods

(1) Study site and samples

Methods (2) Habitat classfication

中國科學院見明動物研究所 KUNMING INSTITUTE OF ZOOLOGY CHINESE ACADEMY OF SCIENCES

Classification of wetland types

Wetland types	Main vegetation	Height (cm)	Coverage (%)	Representative plants
Pond				Open water (%) >75
Mudflat				Bare land with water. All were formed by temporary construction workyards.
HE	Reed	> 50	≥25	Phragmites australis, Acorus calamus, Typha angustata, Zizania latifolia
LE				Paspalum scrobiculatum, Alternanthera philoxeroides, Myriophyllum
LL	Wet grassland	≤50	≥25	aquaticum
HF	Water hyacinth	>20	≥25	Eichhornia crassipes, Nymphaea tetragona
LF	Duckweed	≤20	≥25	Lemna minor, Azolla imbricata, Pistia stratiotes
Mix	Has two or more veg 25%.	getation types	, and each are	ea of the type is no less than 5%. The total area of all vegetations is no less than

HE: High emerging plants; LE: Low emerging plants; HF: High floating plants; LF: Low floating plants; Mix: Mixed vegetation. Coverage (%) is the vegetation area percent in the wetlands.

Methods

(3) Waterbird Surveys

• Waterbirds counts

Lakebody: "look-see" counting method

Lakeside: spot-map census method

• Survey schedules: 36 surveys

Three times each month (early, middle, and late) from March 2013 to February 2014

(4) Statistical Analysis

• Waterbirds composition

Abundance: maximum number.

• Artificial habitat utilization by waterbirds

Similarity analysis: Bray–Curtis association measurement

Differences: PERMANOVA

(1) Waterbirds composition

▲Podiciped: 2; Lar: 5; Gru: 8; Ciconi: 13; Anser: 17; Charadri: 29. Total: 74 species

▲Breeding: 6 (21.6 %); Migrant: 27 (36.5 %); Winter: 29 (39.2 %); Accidental visitor: 2 (2.7%).

Implication:

Dianchi Lake could act as a waterbird breeding, stopover, and wintering site.

中國研學院見明動物研究所 INSTITUTE OF ZOOLOGY

(2) Differences of waterbird community among 7 habitats

SIGNIFICANT Difference in:

Total Species richness (Pseudo-F=4.733, *P*=0.001)

Total Density (Pseudo-F=7.83, *P*=0.001)

No Difference in:

△Mix and LE

Species richness: Pseudo-F=0.99, P=0.34

Density :Pseudo-F=1.76, *P*=0.14

 \triangle LF and Pond

Species richness: Pseudo-F=1.02, *P*=0.35

Density : Pseudo-F=0.05, *P*=0.995

 \wedge HE and HF

Species richness: Pseudo-F=2.95, *P*=0.059

Density : Pseudo-F=1.28, *P*=0.256

 \triangle Mudflat

SIGNIFICANT Different from other

Test for significant differences of species richness (below left) and density (square-root transformed, above right) among wetland types using PERMANOVA

	HE	HF	LE	LF	Mix	Mudflat	Pond
HE		1.28	18.73	8.56	35.89	3.50	11.25
		0.256	0.001 ***	0.004 **	0.001 ***	0.044 *	0.001 ***
HF	2.95		11.15	5.71	24.30	2.50	7.53
	0.059		0.002 **	0.004 **	0.001 ***	0.073	0.004 **
LE	26.74	15.13		2.55	1.76	2.17	3.51
	0.001 ***	0.001 ***		0.07	0.145	0.114	0.032*
LF	2.74	0.98	9.13		4.92	2.03	0.05
	0.066	0.381	0.001 ***		0.005 **	0.117	0.995
Mix	33.71	20.32	0.99	12.58		520	6.92
	0.001 ***	0.001 ***	0.343	0.001 ***		0.008 **	0.002 **
Mudflat	62.69	46.19	9.15	32.40	5.24		3.18
	0.001 ***	0.001 ***	0.011 *	0.001 ***	0.028 *		0.036 *
Pond	5.93	2.68	6.87	1.02	9.90	27.40	
	0.007 **	0.043 *	0.002 **	0.35	0.001 ***	0.001 ***	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ' ' 1

(3) Habitat utilization by waterbirds

Mean species richness (\pm SE) among different wetland types

(a) Species richness

•	Wetland types (n)					Mean		
	HE (55)	LE (19)	HF (38)	LF (25)	Mudflat (3)	Pond (25)	Mix (15)	wiean
All Birds	1.75(0.35)	8.11(1.40)	2.47(0.42)	2.76(0.55)	12.00(4.36)	4.36(0.81)	10.87(2.21)	4.01(0.38)
Podicipediformes	0.25(0.06)	0.63(0.11)	0.13(0.06)	0.60(0.10)	0.00(0.00)	0.68(0.10)	0.93(0.12)	0.43(0.04)
Ciconiiformes	0.58(0.15)	3.00(0.45)	1.29(0.26)	1.12(0.31)	1.00(0.58)	1.32(0.24)	4.20(0.60)	1.47(0.14)
Gruiformes	0.76(0.14)	1.53(0.21)	0.82(0.17)	0.76(0.14)	0.33(0.33)	1.40(0.23)	2.27(0.34)	1.06(0.08)
Charadriiformes	0.13(0.07)	2.53(0.76)	0.11(0.05)	0.16(0.07)	10.00(3.79)	0.48(0.32)	2.93(1.18)	0.83(0.18)
Anseriformes	0.00(0.00)	0.16(0.09)	0.03(0.03)	0.04(0.04)	0.33(0.33)	0.12(0.09)	0.47(0.22)	0.09(0.03)
Lariformes	0.02(0.02)	0.16(0.09)	0.13(0.06)	0.08(0.06)	0.33(0.33)	0.28(0.11)	0.13(0.09)	0.12(0.03)

n: Number of patches.

Mean waterbird density (birds/ha) (square-root transformed) (±SE) among different wetland types

(b) Density

	Wetland types (n)					Mass		
	HE (55)	LE (19)	HF (38)	LF (25)	Mudflat (3)	Pond (25)	Mix (15)	Mean
All Birds	2.19(0.44)	8.07(1.60)	2.77(0.61)	5.82(1.12)	3.82(1.28)	5.71(0.88)	10.10(1.29)	4.61(0.38)
Podicipediformes	0.51(0.15)	1.97(0.48)	0.44(0.25)	2.82(.064)	0.00(0.00)	3.02(0.60)	3.11(0.60)	1.53(0.18)
Ciconiiformes	0.88(0.22)	4.89(0.96)	1.65(0.39)	2.05(0.52)	0.56(0.33)	2.09(0.40)	4.07(0.45)	2.06(0.20)
Gruiformes	1.63(0.36)	4.87(1.10)	1.50(0.43)	3.45(0.97)	0.60(0.60)	3.29(0.69)	7.59(1.24)	2.91(0.30)
Charadriiformes	0.11(0.06)	1.88(0.70)	0.20(0.12)	0.14(0.07)	3.66(1.17)	0.21(0.10)	1.21(0.46)	0.48(0.10)
Anseriformes	0.00(0.00)	0.20(0.12)	0.04(0.04)	0.04(0.04)	0.10(0.10)	0.19(0.13)	0.99(0.70)	0.15(0.06)
Lariformes	0.02(0.02)	0.80(0.47)	0.27(0.14)	0.22(0.17)	0.22(0.22)	0.58(0.28)	0.11(0.08)	0.27(0.08)

n: Number of patches.

Summary

▲ All orders:

Species richness / density : Mix, LE and Mudflat > the remainder four types

▲ Mix / LE: Highest species richenss and density of 4 order:

Podiciped., Ciconi., Gru. and Anser. Also, LE held highest density for Lar.

▲ Mudflat: Highest species richenss and density of Charadri. Highest species richenss for Lar.

▲LF/Pond: Second-lowest for both species richness.

▲HE /HF: Lowest for both species richness and density.

Discussion

• (1) Waterbirds composition

Historical data on species richness of Lake Dianchi, China.

Literature	Survey time	Region	Species richness
Yang et al. (1988)	1984, winter	whole	17
Han et al. (2000)	1997.10-1998.5	West part	26
Wu et al. (2008)	2007.1-2007.4	Caohai	20
Luo (2014)	2011.10-2013.11	whole	67
This study	2013.3-2014.2	whole	74

- (2) Regional-specific
- (3) Habitat utilization was highly related to vegetation height
- (4) Mudflat are occasional and temporary

Conclusion

• Management of Yunnan–Guizhou Plateau lakes should take the requirements of **different seasonal** waterbirds into consideration.

• **Mixed** vegetation and **low** emerging plant wetlands, as well as **mudflats**, are crucial for satisfying the particular habitat requirements of various waterbirds using the lakeside artificial wetlands of the Yunnan–Guizhou Plateau lakes.

THE END!

THANK YOU FOR YOUR ATTENTION!

Wetlands DOI 10.1007/s13157-016-0823-y

ORIGINAL RESEARCH

Waterbirds and their Habitat Utilization of Artificial Wetlands at Dianchi Lake: Implication for Waterbird Conservation in Yunnan-Guizhou Plateau Lakes

Rongxing Wang 1,2 · Fei Wu 1 · Yunyan Chang 1 · Xiaojun Yang 1